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SUMMARY

This paper studies the multi-equilibrium property of the multiple substrates and multiple products with no
inhibition (MMN) module. On the basis of the topological structure, a model for such module is established
in the form of a set of nonlinear ordinary differential equations. It is shown that the injectivity of the
MMN module is equivalent to the nonsingularity of Jacobian matrix of its rate function, and a necessary
and sufficient condition for the injectivity is obtained by using the Hadamard product. For non-injective
MMN module, a sufficient condition for existence of multiple positive equilibria is provided by introduc-
ing the concept of input-matrix. For a type of commonly encountered MMN module—A -MMN module—a
structure-oriented criterion for judging its injectivity is given. For A -MMN modules with some special struc-
ture, it is shown that there does not exist multiply equilibria and the equilibrium (if exists) is asymptotically
stable. Examples and simulations are given to illustrate the results obtained. Copyright © 2012 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

Multi-equilibrium of metabolic networks is a fundamental and significant property in systems
biology [1–7], including the capacity for admitting multiple equilibria and the dynamic behaviors
of the equilibria. The former considers the existence of multiple equilibria and the latter focuses
mainly on their stabilities. This problem has very important realistic meaning. For example, the
multi-equilibrium property of the photosynthetic carbon metabolic network in the mesophyll cells
is closely related to the productivity of food crops [8–10]. It is not only expensive but also difficult,
even not possible, to explore this problem via biological experiments. Hence, many scientists tried
to investigate this issue by using mathematical models from the theoretical point of view [11–13].
These works depended on not only the structure but also parameter information of the mathematical
models. On the one hand, obtaining such information is very difficult. On the other hand, the param-
eter information varies greatly with individuals and is seriously influenced by environmental factors
(temperature, PH value and so forth). For these two main reasons, the theoretical analysis is usually
difficult, and the generalization and application of the theoretical results are limited. Compared with
both the structure and parameter information of a metabolic network, the structure information is
relatively more stable and easier to be obtained. As a result, structure-oriented analysis methods on
the multi-equilibrium property of general metabolic networks are eagerly required.

On the basis of the topological structure of networks, some works related to the multi-equilibrium
property have been carried out in [14–21], and a summary on these works can be found in [3].
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For chemical reaction networks, Craciun and Feinberg [17] developed a very rich theory to
injectivity tests by means of the Jacobian matrix of the rate function based on the law
of mass action. For metabolic networks, to make full use of the topological structure and
reduce the difficulty and complexity of the theoretical analysis and practical application, Lei
et al. [3] proposed a ‘modularization’ idea: regarding a metabolic network as an assembly
of some basic building blocks (called metabolic modules) with specific structures and func-
tions, then to investigate the entire network by analyzing the functional characteristic and
interactions of these basic modules. According to the numbers of the substrates and prod-
ucts and the existence of inhibition, [3] decomposed a metabolic network into four classes of
basic modules, called the Single substrate and Single product with No inhibition (SSN), the
Single substrate and Single product with Inhibition (SSI), the Multiple substrate and Multiple
product with No inhibition (MMN) and the Multiple substrate and Multiple product with
Inhibition (MMI), respectively. Here, a feasible method of realizing such decomposition may
be to take initially each metabolic reaction as a module and then extend it to the maximum
through adding its neighbor nodes according to the definition of basic module. Furthermore, Lei
et al. [3] gave an equivalent condition for the injectivity of SSN module, and proved that SSN mod-
ule with output nodes cannot have multi-equilibrium, the equilibrium (if existed) was shown to be
asymptotically stable in [4]. Lei et al. [5] studied the SSI module and provided a necessary condition
for the existence of multi-equilibrium of the SSI module, in which each reaction had no more than
one inhibitor.

This paper focuses on the multiple substrates and multiple products with no inhibition (MMN)
module, which commonly exists in metabolic networks. In fact, a metabolic network where every
reaction has no inhibitor can be seen as one or more MMN modules. Thus, the study on the multi-
equilibrium property of the MMN module not only is a key step to realize the ‘modularization’ idea
proposed by [3] but also can be directly applied to investigate some specific metabolic networks,
and provides a valuable basis to the research on general MMI module.

Compared with the SSN modules, the MMN ones are more complex in topological structure.
Firstly, the metabolite in the MMN module can be associated with each other by a lot of reac-
tions, and the transformation relationships among metabolites are versatile and flexible, which may
cause high complexity of the topological structure. Secondly, the reaction mechanism in the MMN
module is also more complicated than the one in SSN module. For example, the rate of a given
metabolic reaction in SSN module depends mainly on the concentration of one kind of metabolite,
but the one in MMN module may be related to the concentrations of several or even all kinds of
metabolites. Thus, the complexity of the MMN module is mainly derived from the strong coupling
of substrates and products, which is different from the one in SSI module caused by the negative
feedback inhibition.

Because of the special structure of the MMN module, at least three difficulties need to be over-
come for the theoretical analysis of the equilibrium property. The first is to set up an unified model,
to which the difficulty comes from the complex topology and coupling among metabolic reactions.
The second is to deal with the nonlinearity. The rate of a reaction with multiple substrates is multi-
variable, which makes the nonlinearity of the model of MMN module stronger than the one of SSN
module, or even than the one of SSI module. The methods in [3,5] do not work here, then we have to
develop new techniques to cope with this nonlinearity. The third is to remove parameter information
and extract structure information. The starting point of ‘modularization’ idea is oriented towards
the topological structure, and our aim is also to study the effect of the network structure on the
multi-equilibrium property. Thus, it is necessary, although difficult because of the increase of model
parameters and complexity of network structure, to separate the structure and parameter information
effectively and appropriately.

As mentioned in [3], to describe the rate of a metabolic reaction, the Michaelis–Menten and Hill
kinetics [22, 23] require less information about the intermediate reactions compared with the law
of mass action, and the parameters in the Michaelis–Menten and Hill kinetics have clear biological
meaning and can be regulated by experimental techniques. On the other hand, an enzyme-catalyzed
metabolic reaction usually contains several intermediate reactions, and they are unknown in many
cases. Thus, we take the Hill-form kinetics as the modeling mechanism in this paper, which makes
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the theoretical analysis more difficult than the one in [17] because the model of a network based on
the Hill-form kinetics is much more complex than the one based on the law of mass action.

To establish a unified model and conduct theoretical analysis for the MMN module, we construct
a special vector space and use a nonlinear ordinary differential equations to formulate the model by
means of the projection operator. It is shown that the injectivity of the MMN module is equivalent to
the nonsingularity of Jacobian matrix of its rate function; and then, an easy-to-verify, necessary and
sufficient condition for the injectivity is provided by using the Hadamard product. Furthermore, a
sufficient condition on the existence of multiple positive equilibria is given via introducing the con-
cept of input-matrix. For a class of commonly encountered MMN module—A -MMN module—a
criterion for judging the injectivity is obtained, which is completely based on the network struc-
ture. Especially, for a special class of A -MMN module, the Jacobian matrix of their rate functions
is shown to be diagonally dominated with a chain of nonzero elements, which implies that such
module cannot have multiple equilibria, and the equilibrium (if exists) is asymptotically stable.

The rest of this paper is organized as follows. Section 2 describes the formulation of the MMN
module. Section 3 gives the multi-equilibrium property of both the MMN module and the A -MMN
module, including the judging criterion of the injectivity and sufficient condition on existence of
multiple positive equilibria. Section 4 uses some numerical examples and simulations to demonstrate
the effectiveness of the methods and results developed in this paper. Section 5 provides concluding
remarks and related future works. Some detailed mathematical results and proofs are put into the
appendix section.

2. MODELING OF MMN MODULE

In this section, the modeling method of the MMN module is provided, and some symbols used in
this paper are also given. We use a digraph to reveal the inter-relationship among the metabolites,
and Hill-form kinetics to describe the reaction rate. On the basis of the network structure, a model
of the MMN module is given by a set of ordinary differential equations.

2.1. Definitions and symbols

To clarify what an MMN module is, we need several concepts. Firstly, the metabolic reactions are
classified into four classes according to the numbers of substrates and products and the existence
of inhibitions.

Definition 2.1 ([3])
A metabolic reaction is called a single substrate and single product (SS) reaction, if it contains only
one substrate and one product; otherwise, called a multiple substrate or multiple product (MM)
reaction. An SS (or MM) metabolic reaction is called an SS (or MM) reaction with inhibition, SSI
(or MMI) for short, if there exist some inhibitors of the reaction; otherwise, called an SS (or MM)
reaction with no inhibition, SSN (or MMN) for short.

Then, the metabolites in a group of reactions with no inhibition are classified into three classes.

Definition 2.2
For a group of metabolic reactions with no inhibition, its interaction graph is a digraph by viewing
the metabolite and reaction as its node and edge, whose direction is from the substrate to product.
A node is called an input node, if the direction of each edge connecting it points to other nodes; a
node is called an output node, if the direction of each edge connecting it points to itself; a node is
called a state node if it is neither an input node nor an output node.

Remark 2.1
A reversible reaction will be viewed as two reactions of a forward one and a reverse one. For

example, regard A C B
E
• C C D as a combination of the forward reaction A C B

E
! C CD

and the reverse reaction C CD
E
! ACB .

Now, we can give the definition of the MMN module.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2014; 24:1505–1529
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Definition 2.3
(MMN Module)

For a given metabolic network, the set of all the metabolites is denoted by MN , and the set of all
the reactions is denoted by RN . .M , R/ is called an MMN metabolic module of this network, if
the following conditions are satisfied:

(i) M is a nonempty subset of MN ;
(ii) R � RN is nonempty and consists of all the reactions that are relevant to the metabolites

in M . Here, a reaction is said to be relevant to a metabolite S, if S is a substrate, product or
inhibitor of this reaction;

(iii) all the reactions in R have no inhibitor;
(iv) if there exist input nodes and output nodes, then for any state node S 2 M , there exists a

directed path from some input node to S and a directed path from S to some output node in
the interaction graph of R; and

(v) the undirected graph constructed as follows is connected: remove all the input nodes and output
nodes (if any) and edges connected them, and replace each directed edge by an undirected edge
in the interaction graph of R.

Remark 2.2
In the definition earlier, (iv) and (v) proceed from the practical metabolic networks and the
‘modularization’ idea. As Lei et al. [3] mentioned, (iv) is from biological systems, mainly because
in a living organism any metabolite must be synthesized from other metabolites and be converted
into an output; (v) is essential for the modularization decomposition.

Remark 2.3
(i) If all the reactions in .M , R/ are SSN reactions, then .M , R/ is an SSN module [3].

(ii) Denote the set of input nodes, the set of output nodes and the set of state nodes by I , O and
S , respectively. By Definition 2.2, it can be seen that

I \O D ;, .I [O/\S D ;, I [O [S DM .

(iii) A metabolic network without any inhibitor can always be divided into one or more MMN
modules. Especially, if (iv) and (v) of Definition 2.3 are satisfied, then the network is an
MMN module.

Here, we use an example to explain the definitions and symbols given earlier.

Example 2.1
The following is a group of metabolic reactions without inhibition:

H1! S1,S1! S2,S1! S3,S1CH2! S4,

S2! S5,S2C S3! S6CP ,S3C S4! S5C S6,S5! S2,S6! S4,

whose interaction graph (Figure 1) can be drawn according to Definition 2.2. The set containing all
these reactions is denoted by R0, and M0 , ¹H1,H2,S1,S2,S3,S4,S5,S6,P º. By Definition 2.3,
.M0, R0/ is an MMN module, the set of state nodes S0 D ¹S1,S2,S3,S4,S5,S6º, the set of input
nodes I0 D ¹H1,H2º and the set of output nodes O0 D ¹P º.

If S1 ! S2, S1 ! S3, S3 C S4 ! S5 C S6 and S6 ! S4 were removed from R0, then the rest
will be divided into two MMN modules because (iv) and (v) in Definition 2.3 do not hold.
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Figure 1. Interaction graph of a group of metabolic reactions with no inhibition.

For a finite set I and number field K, the vector space over K generated by I is denoted by
KI D

®P
i2I ˛i i W ˛i 2K

¯
; for J � I , the projection operator �J .�/ from KI to KJ is given by

�J WK
I !KJX

i2I
˛i i 7!

X
i2J

˛i i .

In addition, ZC, ZC, R, RC and RC are the sets of positive integers, non-negative integers, real
numbers, positive real numbers and non-negative real numbers, respectively; ‘00 D 1’ is appointed
in this paper.

2.2. Model

Before modeling the MMN module, we firstly give an appropriate expression to describe the rate
of the reaction with no inhibition and consider a metabolic reaction with Ns kinds of substrates and
Np kinds of products:

a1A1C � � � C aNsANs ! b1B1C � � � C bNPBNp , (1)

where ai 2 ZC and bj 2 ZC are the stoichiometric coefficients with respect to the substrate Ai and
product Bj , respectively, 1 6 i 6 Ns , 1 6 j 6 Np . We adopt the following Hill-form kinetics to
describe the rate of (1):

v D V �

NsY
iD1

�
ŒAi �

ni

ki C ŒAi �ni

�ai
, (2)

where Œ�� denotes the concentration of ‘�’; the parameters V 2 RC, ki 2 RC and ni 2 ZC are the
maximum reaction rate, Michaelis–Menten constant and Hill coefficient, respectively. The reaction
(1) generates Ai with the rate of aiv and consumes Bj with the rate of bj v, 1 6 i 6 Ns and
16 j 6Np .

Remark 2.4
Here, the main reasons of using (2) to describe the rate of (1) are as follows:

(i) if Ns D 1, then (2) is the Hill kinetics [22];
(ii) if (1) is a bi-substrate reaction, then the Michaelis-Menten kinetics [13, 23] is a special form

of (2); and
(iii) in practice, the metabolic reaction with three or more substrates is not so common, but its real

rate is very complex. In this case, (2) is just an approximate rate of (1), whose advantage is that
(2) still obeys the Hill or Michaelis–Menten mechanism when the concentrations of Ns � 1 or
Ns � 2 kinds of substrates are constant.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2014; 24:1505–1529
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Remark 2.5
From (2), it can be seen that the reaction rate of (1) described by the Hill-form kinetics is a rational
fractional function with 2NsC1 parameters, but the one described by the law of mass action in [17]
is a multilinear function with only one parameter.

Now, we set up the model of the MMN module .M , R/. Let I , O and S be the set of input
nodes, the set of output nodes and the set of state nodes, respectively. Then, a reaction in R can be
represented as

A! B, A 2RI[S

C , B 2RS[O

C .

Assume that there are n kinds of metabolites in S and m reactions in R and denote

S D ¹S1, : : : ,Snº,

R D ¹A1! B1, : : : ,Am! Bmº.

The coordinate vector of �S .Aj /, which is the projection of Aj from R
I[S

C to R
S

C , with respect
to the basis ¹S1, : : : ,Snº is denoted by ˛j . Similarly, the coordinate vector of �S .Bj /, which is

the projection of Bj from R
S[O

C to R
S

C , with respect to the basis ¹S1, : : : ,Snº is denoted by ˇj .
˛i ,j and ˇi ,j are the i-th component of ˛j and ˇj , respectively, 1 6 i 6 n, 1 6 j 6 m. Represent
the set of input nodes as I D

®
I N1, : : : , I Nl

¯
, denote the coordinate vector of �I .Aj / with respect

to the basis
®
I N1, : : : , I Nl

¯
by �j , and let � N� ,j be the coordinate component of �j with respect to I N� ,

16 � 6 l , 16 j 6m.
The rate of Aj ! Bj is denoted by vj , which is given by (2), that is,

vj D �jVj

nY
iD1

 
x
ni ,j
i

ki ,j C x
ni ,j
i

!˛i ,j
, (3)

where �j D
Ql
�D1

�
ŒI� �

n N� ,j

k N� ,jCŒI� �
n N� ,j

�� N� ,j
, xi D ŒSi �, 1 6 j 6 m, 1 6 i 6 n. Let �D ¹�1, : : : ,�mºT ,

� D ¹V1, : : : ,VmºT , �j D .k1,j , : : : , kn,j /
T , 	j D .n1,j , : : : ,nn,j /

T , � D .�1, : : : , �m/ and 	 D
.	1, : : : , 	m/. Then, vj D vj .x/D vj

�
xI�j ,Vj , �j , 	j

�
with x D .x1, : : : , xn/T , j D 1, : : : ,m.

Given Si 2S , the change rate of its concentration is equal to the rate of generating it minus the
one of consuming it, or mathematically,

dxi

dt
D

mX
jD1

.ˇi ,j � ˛i ,j /vj , 16 i 6 n. (4)

Then, taking the concentrations of state nodes x as the variables, one can obtain a model of .M , R/
with respect to the rate form (2):

dx

dt
D

0B@
dx1
dt
...

dxn
dt

1CAD
0B@ r1.xI�, �, �, 	/

...
rn.xI�, �, �, 	/

1CA, r.xI�, �, �, 	/D
mX
jD1

.ˇj � ˛j /vj , (5)

where ri .xI�, �, �, 	/ is given by the right of (4), i D 1, : : :, n. Let P D .˛1, : : : ,˛m/,
QD .ˇ1, : : : ,ˇm/, W DQ�P and v D .v1, : : : , vm/T . By (5), we have

dx

dt
D r.xI�, �, �, 	/DWv. (6)

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2014; 24:1505–1529
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Remark 2.6
(i) Only the concentrations of the state nodes are viewed as the variables of model (5), the ones

of the input nodes are viewed as the model parameters.
(ii) The matrices P andQ represent the structure information of the MMN module, which are not

related to the exact rate form of the metabolic reaction and parameters in the rate.

Definition 2.4
r.xI�, �, �, 	/ is called the rate function of .M , R/with respect to the rate form (2), or the rate func-
tion for short; accordingly, R D

®
r.xI�, �, �, 	/ W � 2RmC, � 2RmC, � 2RnC �R

m
C, 	 2 ZnC �Z

m
C

¯
is called the set of rate functions of .M , R/. If, for any given r 2 R, r is injective on RnC, then we
say .M , R/ is injective. Otherwise, .M , R/ is non-injective.

Definition 2.5
Nx 2RnC is called an equilibrium of .M , R/, if there exists r 2R such that r . Nx/D 0. If there exists
r 2 R such that the algebraic equation r D 0 has at least two roots in RnC, then we say .M , R/ has
the capacity for admitting multiple positive equilibria; otherwise, .M , R/ has not the capacity for
admitting multiple positive equilibria.

3. MULTI-EQUILIBRIUM PROPERTY OF MMN MODULE

This section gives two criteria for judging the injectivity of MMN module. For the non-injective
MMN module, a sufficient condition for existence of multiple positive equilibria is provided.
Then, the results are used to analyze the multi-equilibrium property of a special type of the MMN
module—A -MMN module.

3.1. Injectivity criterion

By Definition 2.4–2.5, it can be seen that the injectivity of the MMN module is a sufficient condition
for the absence of multiple equilibria or the non-injectivity is a necessary condition for the existence
of multiple equilibria. But verifying whether a vector-valued function is injective is not easy, and
even quite difficult when some parameters are unknown. This subsection will give two equivalent
conditions for the injectivity of the MMN module, with which verifying injectivity becomes easier
or even can be realized by the use of computer softwares.

To make the thought concise, we will begin with the case of scalar functions. Let f be
with one variable and continuously differentiable. Then, f is injective if and only if its deriva-
tive is nonzero everywhere because of Differential Mean-Value Theorem. This naturally arises
a question whether Jacobian matrix of the vector-valued function can be used to determine
its injectivity. It is regrettable that the injectivity of the vector-valued function is not equiva-
lent to the everywhere nonsingularity of its Jacobian matrix. For example, given the function

f1.s, t / D
�p

2es=2 cos.te�s/,
p
2es=2 sin.te�s/

�T
[24], the determinant of its Jacobian matrix

is det
h�

@f1
@s

, @f1
@t

�i
� 1 and f1.0, t C 2k
/ D f1.0, t /. This tells us that f1 is non-injective,

although its Jacobian matrix is nonsingular. For function f2.s, t / D
�
1
3
.s � 1/3, t

�T
[5], it can

be seen that f2.s, t / is injective on R2, although the determinant of its Jacobian matrix is zero

on ¹.s, t / 2 R2 W s D 1º because det
h�

@f2
@s

, @f2
@t

�i
D .s � 1/2. Fortunately, the rate function of

the MMN module has a property similar to the Differential Mean-Value Theorem. On the basis of
such property, we can prove that the injectivity of the MMN module is equivalent to the everywhere
nonsingularity of Jacobian matrix of its rate function.

For convenience, denote the Jacobian matrix dr
dx

by Dr.x/.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2014; 24:1505–1529
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Lemma 3.1
For any r 2 R, b D .b1, : : : , bn/T 2 RnC and a D .a1, : : : , an/T 2 RnC, there exist Qr 2 R and
c D .c1, : : : , cn/T 2RnC such that

r.b/� r.a/DDQr.c/.b � a/ (7)

and

min¹ai , biº6 ci 6max¹ai , biº, 16 i 6 n. (8)

Proof
Choose Qr and c by the way of Lemma A.5, and ci as follows

ci D

´
bi�ai

lnbi�lnai
, ai ¤ bi I

ai , ai D bi .

Then, ci > 0 and �i D bi � ai , 16 i 6 n. By Lemma A.5, (7) is true.
Without loss of generality, for any given i , let bi > ai . If bi D ai , then ai 6 ci 6 bi ; otherwise,

consider the following functions:

g1.t/D bi ln bi � bi C t � bi ln t , 0 < t 6 bi ,

g2.t/D ai ln ai � ai C t � ai ln t , ai 6 t .
Noticing g01.t/ D 1 � bi=t , g1.bi / D 0 and g02.t/ D 1 � ai=t , g2.ai / D 0, we have g1.t/ > 0,
0 < t 6 bi and g2.t/> 0, ai 6 t . Thus,

bi � ci D bi �
bi � ai

ln bi � ln ai
D

g1.ai /

ln bi � ln ai
> 0,

ci � ai D
bi � ai

ln bi � ln ai
� ai D

g2.bi /

ln bi � ln ai
> 0,

which implies ai 6 ci 6 bi . Therefore, one can obtain (8). �

Remark 3.1
At first glance, this lemma is very similar to the well-known Differential Mean Value Theorem. But,
actually there are some differences between them. Firstly, r and Qr are often not equal. Secondly, Qr
may depend on a and b.

Lemma 3.2
For any r 2R, c 2RnC and � 2Rn, there exist Qr 2R, b 2RnC and a 2RnC such that

Dr.c/� D Qr.b/� Qr.a/

and

b � aD � .

Proof
Choose Qr , b and a by the way of Lemma A.6, and ai as follows

ai D

´
�i

e�i =ci�1
, �i ¤ 0I

any positive real number, �i D 0.

Then, we have

ai > 0, bi D ai C �i D
�ie

�i=ci

e�i=ci � 1
> 0, 16 i 6 n,

which implies the lemma by Lemma A.6. �

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2014; 24:1505–1529
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Theorem 3.1
The MMN module .M , R/ is injective if and only if

det

�
dr

dx

�
¤ 0, 8x 2RnC, 8r 2R. (9)

Proof
Firstly, prove the sufficiency. Supposing (9) is true, we prove that .M , R/ is injective. If .M , R/
was non-injective, then there would exist r 2 R such that r is non-injective on RnC, that is to say,
there would exist a 2RnC and b 2RnC such that

b � a¤ 0, r.b/� r.a/D 0. (10)

For these r , a and b, by Lemma 3.1, there would exist Qr 2R and c 2RnC such that

r.b/� r.a/DDQr.c/.b � a/,

which together with (10) implies det .DQr.c// D 0. This contradicts (9). Thus, .M , R/ is injective,
and the sufficiency is proved.

Now, we prove the necessity. Supposing .M , R/ is injective, we prove (9). If (9) was not true,
then there would exist r 2 R and c 2 RnC such that det.Dr.c// D 0. Therefore, there would exist
0¤ � 2Rn such that

Dr.c/� D 0. (11)

For these r , c and � , by Lemma 3.2, there would exist Qr 2R, a 2RnC and b 2RnC such that

b � aD � , Dr.c/� D Qr.b/� Qr.a/. (12)

Noticing a ¤ b because of � ¤ 0, by (11) and (12), we know that Qr is non-injective on RnC, which
contradicts the injectivity of .M , R/. Thus, (9) is true, which implies the necessity. �

Corollary 3.1
If W in (6) satisfies

Rank.W / < n, (13)

then .M , R/ is non-injective.

Proof
By (6), we have dr

dx
DW dv

dx
, which together with (13) implies

Rank

�
dr

dx

�
6min

²
Rank(W), Rank

�
dv

dx

�³
< n.

Thus, det
�
dr
dx

�
� 0. By Theorem 3.1, the corollary is obtained. �

Corollary 3.2
If m< n, then .M , R/ is non-injective.

Remark 3.2
If the number of metabolic reactions is less than the one of state nodes, then the MMN module is
non-injective by Corollary 3.2.

Theorem 3.1 plays an important role in this paper and supplies a method of judging injectivity.
More importantly, it is also a bridge between structure-oriented method and the multi-equilibrium
study on the MMN module. On the basis of this theorem, we can obtain an easy-to-verify equivalent
condition on injectivity.
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Definition 3.1 ([25])
Let A D .aij /m�n and B D .bij /m�n. The Hadamard or Schur product of A and B is the matrix
A ıB D .aij bij /m�n.

Definition 3.2
For the n-by-mmatrix U with n6m, putting its j1-th, : : :, jn-th column together in sequence forms
a new square matrix denoted by U.j1, : : : , jn/, where ji 2M , ¹1, : : : ,mº, 16 i 6 n.

Lemma 3.3
Let E DE.xI �, 	/D .�1, : : : , �m/, where �j is given by (A.1), j D 1, : : : ,m. If m< n, then

det

�
dr

dx

�
D 0. (14)

Otherwise,

det

�
dr

dx

�
D

X
¹j1,:::,jnº�M

nY
iD1

x�1i vji det.W.j1, : : : , jn// det.E.j1, : : : , jn/ ıP.j1, : : : , jn//. (15)

Proof
If m< n, (14) is obtained by Corollary 3.1. Otherwise, by (A.3) we have 

nY
iD1

xi

!
det

�
dr

dx

�

D

 
nY
iD1

xi

!
det

��
@r

@x1
, : : : ,

@r

@xn

	�

D

 
nY
iD1

xi

!
det

0@24 mX
jD1

.ˇj � ˛j /vj
k1,jn1,j

k1,j C x
n1,j
1

˛1,j

x1
, : : : ,

mX
jD1

.ˇj � ˛j /vj
kn,jnn,j

kn,j C x
nn,j
n

˛n,j

xn

351A
D det

0@24 mX
jD1

.ˇj � ˛j /vj
k1,jn1,j

k1,j C x
n1,j
1

˛1,j , : : : ,
mX
jD1

.ˇj � ˛j /vj
kn,jnn,j

kn,j C x
nn,j
n

˛n,j

351A
D
X
j12M

: : :
X
jn2M

det

 "
.ˇj1 � ˛j1/vj1k1,j1n1,j1˛1,j1

k1,j1 C x
n1,j1
1

, : : : ,
.ˇjn � ˛jn/vjnkn,jnnn,jn˛n,jn

kn,jn C x
nn,jn
n

#!

D
X
j12M

: : :
X
jn2M

nY
iD1

vji det

 "
.ˇj1 � ˛j1/k1,j1n1,j1˛1,j1

k1,j1 C x
n1,j1
1

, : : : ,
.ˇjn � ˛jn/kn,jnnn,jn˛n,jn

kn,jn C x
nn,jn
n

#!
.

(16)

For given ¹j1, : : : , jnº �M , denote
 be the permutation group generated by ¹j1, : : : , jnº. Then,
the coefficient of

Qn
iD1 vji in (16) is

X
ı2�

det

 "
.ˇı.1/ � ˛ı.1//k1,ı.1/n1,ı.1/˛1,ı.1/

k1,ı.1/C x
n1,ı.1/
1

, : : : ,
.ˇı.n/ � ˛ı.n//kn,ı.n/nn,ı.n/˛n,ı.n/

kn,ı.n/C x
nn,ı.n/
n

#!

D
X
ı2�

nY
iD1

ki ,ı.i/ni ,ı.i/

ki ,ı.i/C x
ni ,ı.i/
i

˛i ,ı.i/ det.W.ı.1/, : : : , ı.n///

D
X
ı2�

nY
iD1

ki ,ı.i/ni ,ı.i/

ki ,ı.i/C x
ni ,ı.i/
i

˛i ,ı.i/sign.ı/ det.W.j1, : : : , jn//.
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By (A.1) and Definition 3.1, we have

X
ı2�

nY
iD1

ki ,ı.i/ni ,ı.i/

ki ,ı.i/C x
ni ,ı.i/
i

˛i ,ı.i/sign.ı/D det.E.j1, : : : , jn/ ıP.j1, : : : , jn//.

Thus, the lemma is proved. �

Remark 3.3Qn
iD1 x

�1
i vji det.W.j1, : : : , jn// det.E.j1, : : : , jn/ıP.j1, : : : , jn// is called a term in the determi-

nant expansion of Jacobian matrix dr
dx

.

Definition 3.3
Given a group of functions f1.�/, : : : ,f�.�/, we say the functions have the same sign on the set X if

sign.f1.x//D sign.f2.x//D � � � D sign.f�.x//, 8x 2X .

Theorem 3.2
The MMN module .M , R/ is injective if and only if m > n and there exist nonzero terms in the
determinant expansion of dr

dx
, and all these nonzero terms have the same sign on RnC for any r 2R.

Proof
By Theorem 3.1 and Lemma 3.3, the sufficiency is true.

The following is the proof of the necessity. Suppose .M , R/ is injective. Then, by Corollary 3.2,
we have m > n. By Theorem 3.1 and Lemma 3.3, there exist nonzero terms in the determinant
expansion of dr

dx
. If these nonzero terms do not have the same sign on RnC, then there exist Ox 2RnC,

¹j1, : : : , jnº �M and ¹i1, : : : , inº �M such that

det.W.j1, : : : , jn// det .E . OxI �, 	/ .j1, : : : , jn/ ıP.j1, : : : , jn// > 0,

det.W.i1, : : : , in// det .E . OxI �, 	/ .i1, : : : , in/ ıP.i1, : : : , in// < 0.

Hence,

Dr . Ox/
Vj1!1,:::,Vjn!1
�������������!1, Dr . Ox/

Vi1!1,:::,Vin!1
�������������!�1.

Because det
�

d
dx
r.xI�, �, �, 	/

�
is continuous with respect to �, there exists N� such that

r .xI�, N�, �, 	/ 2R, Dr.xI�, N	,
,�/ . Ox/D 0,

which contradicts the injectivity of .M , R/. Thus, the necessity is proved. �

Theorem 3.1–3.2 present sufficient and necessary conditions for not only the injectivity but also
the non-injectivity of the .M , R/. On the basis of these conditions, we can conveniently verify the
non-injectivity of the MMN module. But the non-injectivity is only a necessary condition on the
capacity for admitting multiple positive equilibria (Example 4.1), because .M , R/ has the capacity
for admitting multiple positive equilibria implies that there exist r 2 R, a 2 RnC and b 2 RnC with
a¤ b such that not only r.a/D r.b/ but also r.a/D r.b/D 0.

3.2. Sufficient existence condition of multiple positive equilibria

As mentioned earlier, the non-injective MMN module may not have the capacity for admitting mul-
tiple positive equilibria. In this subsection, a sufficient condition for existence of multiple positive
equilibria will be provided.
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Definition 3.4
Let M0 D ¹j 2 M W ˛j D 0º , ¹�1, : : : , �hº. ˆ D .ˇ�1 , : : : ,ˇ�h/ is called the input-matrix of the
MMN module .M , R/. Furthermore, if the linear equations

ˆ.x1, x2, : : : , xh/
T D

hX
iD1

xiˇ�i D b (17)

had a solution in RhC for any b 2RnC, then ˆ is said to be positive nonsingular.

Lemma 3.4
If the input-matrix ˆ of .M , R/ is positive nonsingular and there exist r D r.xI�, �, �, 	/ 2 R,
a 2RnC and b 2RnC with a¤ b such thatX

j2M=M0

.˛j � ˇj /vj .a/D
X

j2M=M0

.˛j � ˇj /vj .b/ 2R
n
C, (18)

then .M , R/ has the capacity for admitting multiple positive equilibria.

Proof
Because ˆ is positive nonsingular, by (18) and Definition 3.4, we know

ˆ.x1, x2, : : : , xh/
T D

X
j2M=M0

.˛j � ˇj /vj .a/

has a solution in RhC denoted by
�
x�1 , : : : , x�

h

�T
. By (17), we have

hX
iD1

x�i ˇ�i D
X

j2M=M0

.˛j � ˇj /vj .a/. (19)

For j 2M=M0, let eV j D Vj . Without loss of generality, let j D �i for j 2M0 and eV j D x�i =�j ,
which implies Qvj D x�i . Thus, Qr .xI�, Q�, �, 	/ 2R. By (5), it can be seen that

Qr .aI�, Q�, �, 	/D
X

j2M=M0

.ˇj � ˛j / Qvj .a/C
X
j2M0

.ˇj � ˛j / Qvj .a/

D
X

j2M=M0

.ˇj � ˛j /vj .a/C
X
�i2M0

x�i ˇ�i ,

which together with (19) indicates Qr.a/ D 0. Similarly, we have Qr.b/ D 0. Thus, the lemma is
obtained by Definition 2.5. �

Remark 3.4
(18) implies r.a/D r.b/, but the converse is not true. In fact, r.a/D r.b/ if and only ifX

j2M=M0

.˛j � ˇj /vj .a/D
X

j2M=M0

.˛j � ˇj /vj .b/.

Theorem 3.3
If the input-matrix ˆ of the MMN module .M , R/ is positive nonsingular and there exist r D
r.xI�, �, �, 	/ 2R and c 2RnC such that

det .Dr.c//D 0 (20)

and X
j2M=M0

.˛j � ˇj /vj .c/ 2R
n
C, (21)

then .M , R/ has the capacity for admitting multiple positive equilibria.
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Proof
To prove the theorem, by Lemma 3.4, it is sufficient to show that there exist Qr D Qr .xI�, Q�, Q�, 	/ 2R,
a 2RnC and b 2RnC with a¤ b such thatX

j2M=M0

.˛j � ˇj /vj .aI�j , Q�j , Q�j , 	j /D
X

j2M=M0

.˛j � ˇj /vj .bI�j , Q�j , Q�j , 	j / 2R
n
C.

The following gives such Qr , a and b.
By (20), we know that there exists nonzero � 2Rn such that Dr.c/� D 0. Let �N D �=N for any

given N 2 ZC. Then,

Dr.c/�N D 0. (22)

For these r.xI�, �, �, 	/ 2 R, c 2 RnC and �N 2 Rn, by Lemma A.6, there exist rN D
rN .xI�, �N , �N , 	/ 2R, bN 2RnC and aN 2RnC such that

Dr.c/�N D rN
�
bN I�, �N , �N , 	

�
� rN

�
aN I�, �N , �N , 	

�
, (23)

rN , bN and aN are selected in the way of (A.9), (A.10) and (A.11) with bi D ci and the ‘any positive
real number’ in (A.10) and (A.11) are chosen as ki ,j and Vj , respectively.

Noticing �N ¤ 0 and (A.9), we have

aN ¤ bN (24)

and

bN � c, lim
N!1

aN D c. (25)

Let y0 D b
ni ,j
i , y D a

ni ,j
i , p D ki ,j =

�
ki ,j C c

ni ,j
i

�
in Lemma A.3. Then, limN!1 k

N
i ,j D ki ,j by

(A.10) and (25). Therefore,

lim
N!1

�N D �. (26)

By (A.2), we have limN!1 ˛j ��j .cI�j , 	j/��ND0, which implies limN!1
˛j��j .cI
j ,�j /��N

e
˛j ��j .cI�j ,�j /��N�1

D1.

Thus, limN!1 V
N
j D Vj by (25)–(26) and (A.11). Furthermore,

lim
N!1

�N D �. (27)

By (25)–(27), one can obtain

lim
N!1

X
j2M=M0

.˛j � ˇj /vj
�
bN I�j ,V Nj , �Nj , 	j

�
D

X
j2M=M0

.˛j � ˇj /vj .cI�j ,Vj , �j , 	j /. (28)

This together with (21) implies that there exist positive integer N0 such thatX
j2M=M0

.˛j � ˇj /vj

�
bN0 I�j ,V N0j , �N0j , 	j

�
2RnC. (29)

By (22)–(23) and Remark 3.4, we haveX
j2M=M0

.˛j � ˇj /vj

�
aN0 I�j ,V N0j , �N0j , 	j

�
D

X
j2M=M0

.˛j � ˇj /vj

�
bN0 I�j ,V N0j , �N0j , 	j

�
.

(30)

Let Qr D rN0 , aD aN0 and b D bN0 . Then, by (24) and (29)–(30), it can be seen that such Qr , a and
b are the very ones we are looking for. The theorem is proved. �
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Remark 3.5
(i) Theorem 3.3 not only gives a sufficient condition for existence of multiple positive equilibria

but also supplies a method of finding the equilibrium.
(ii) The positive nonsingularity of the input matrixˆ of the MMN module is not necessary for the

existence of multiple positive equilibria (Example 4.2).

3.3. A -MMN module

A -MMN metabolic module (to be given in the succeeding text) is an important type of the MMN
module. Because of its special characteristic, we can give an injectivity criterion completely based
on the topological structure.

Definition 3.5
For any j 2M=M0, if there exists "j 2 ¹1, : : : ,nº such that

˛i ,j ¤ 0 , i D "j , (31)

then .M , R/ is called an A -MMN module.

Remark 3.6
(i) SSN module [3] is an A -MMN one.

(ii) By (31), we have

vj D

²
�j , j 2M0I

vj .x"j /, j 2M=M0,
(32)

which implies that the metabolic reaction rate in the A -MMN module is either a constant or with
only one variable.

Theorem 3.4
A -MMN module .M , R/ is injective if and only if m > n and there exists nonzero element in
the set

¹det.P.j1, : : : , jn// det.W.j1, : : : , jn// W ¹j1, : : : , jnº �M º,

and all these nonzero elements have the same sign.

Proof
Because .M , R/ is an A -MMN module, by (31), (A.1) and Definition 3.1, we have

det.E.j1, : : : , jn/ ıP.j1, : : : , jn//D
nY
iD1

k"ji ,jin"ji ,ji

k"ji ,ji C x
n"ji

,ji

i

det.P.j1, : : : , jn//,

which together with

nY
iD1

k"ji ,jin"ji ,ji =
�
k"ji ,ji C x

n"ji
,ji

i

�
> 0

implies

det.E.j1, : : : , jn/ ıP.j1, : : : , jn//D 0 , det.P.j1, : : : , jn//D 0

and

sign.det.E.j1, : : : , jn/ ıP.j1, : : : , jn///D sign.det.P.j1, : : : , jn///.

By Lemma 3.3 and Theorem 3.2, the lemma is proved. �
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Remark 3.7
The method given by Theorem 3.4 does not depend on the model parameter. Even though the model
parameters are unknown, the injectivity still can be judged according to the topological structure of
the A -MMN module.

The results given earlier tell us how to judge the injectivity according to the network structure
of the A -MMN module. Then, one may ask: what kinds of structures can result in injectivity or
non-injectivity? This problem is very difficult. As an initial result, we now give a structure that
implies injectivity.

Definition 3.6 ([26])
A matrix D D .dij /m�m is called to be diagonally dominated with a chain of nonzero elements if it
satisfies the following conditions:

(A) jdi i j>
P
j¤i jdj i j, i D 1, 2, : : : ,mI

(B) MC D
°
i 2M W jdi i j>

P
j¤i jdj i j

±
¤ ;I

(C) if i 62MC, then there exists a sequence:

di1i , di2i1 , : : : , dil il�1 , dj il ,

where every element is nonzero and j 2MC.

Lemma 3.5 ([26])
Let AD .aij /m�m be diagonally dominated with a chain of nonzero elements. If ai i < 0,
i D 1, 2, : : : ,m, then

detA¤ 0, and Re.�i .A// < 0, i D 1, 2, : : : ,m,

where Re.�/ denotes the real part of the complex number ‘ �’ and �i .A/ is the i-th eigenvalue of the
matrix A.

Theorem 3.5
If an A -MMN module .M , R/ has an output node and

˛"j ,j � ˇ"j ,j > IŒ
O.ˇj /¤0�C
X
i¤"j

ˇi ,j , j 2M=M0, (33)

then

(i) .M , R/ is injective, and has no capacity for admitting multiple positive equilibria;
(ii) if .M , R/ has an equilibrium, then the equilibrium is asymptotically stable.

Proof
Firstly, prove that Jacobian matrix dr

dx
is diagonally dominated with a chain of nonzero elements.

By (4), we have

@rj

@xi
D

X
k2M=M0

.ˇj ,k � ˛j ,k/
@vk

@xi
C
X
k2M0

.ˇj ,k � ˛j ,k/
@vk

@xi
,

which together with (32) implies

@rj

@xi
D

X
k2M=M0

.ˇj ,k � ˛j ,k/
@vk

@xi
D

X
k2M=M0,"kDi

.ˇj ,k � ˛j ,k/
@vk

@xi
.
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By (31), it can be seen that

@rj

@xi
D

8̂̂̂<̂
ˆ̂:
�

X
k2M=M0,"kDi

.˛"k ,k � ˇ"k ,k/
@vk

@xi
, j D i I

X
k2M=M0,"kDi

ˇj ,k
@vk

@xi
, j ¤ i ,

(34)

and for j ¤ i ,

@rj

@xi
¤ 0 , 9k0 2M , s.t . ˛i ,k0ˇj ,k0 ¤ 0. (35)

By (33), we know

˛"k ,k � ˇ"k ,k > 0, k 2M=M0, (36)

which together with (34) indicatesˇ̌̌̌
@ri

@xi

ˇ̌̌̌
D

X
k2M=M0,"kDi

.˛"k ,k � ˇ"k ,k/
@vk

@xi
,

X
j¤i

ˇ̌̌̌
@rj

@xi

ˇ̌̌̌
D
X
j¤i

@rj

@xi
D
X
j¤i

X
k2M=M0,"kDi

ˇj ,k
@vk

@xi
D

X
k2M=M0,"kDi

X
j¤"k

ˇj ,k
@vk

@xi
.

Thus, by (33) we have ˇ̌̌̌
@ri

@xi

ˇ̌̌̌
>
X
j¤i

ˇ̌̌̌
@rj

@xi

ˇ̌̌̌
(37)

and ˇ̌̌̌
@ri

@xi

ˇ̌̌̌
>
X
j¤i

ˇ̌̌̌
@rj

@xi

ˇ̌̌̌
, 9 Nk0, s.t . ˛i , Nk0 ¤ 0,�O

�
ˇ Nk0

�
¤ 0, 16 i 6 n. (38)

The inequality (37) implies that dr
dx

satisfies the condition .A/ of Definition 3.6. Because .M , R/
has an output node, by (38) we know8<:i 2 ¹1, 2, : : : ,nº W

ˇ̌̌̌
@ri

@xi

ˇ̌̌̌
>
X
j¤i

ˇ̌̌̌
@rj

@xi

ˇ̌̌̌9=;¤ ;.
Hence, dr

dx
also satisfies the condition .B/ of Definition 3.6.

If the inequality (37) cannot be strictly established, then by the condition (iv) of Definition 2.3,
there exist i1, : : : , ij0 such that ˛i ,i1 ¤ 0, �O.ˇij0

/ ¤ 0, and there exists tj such that
ˇtj ,ij ˛tj ,ijC1 ¤ 0, j D 1, : : : , j0 � 1. Thus, by (35), we know the elements in the following
sequence:

@rt1
@xi

,
@rt2
@xt1

, : : : ,
@rtj0�1

@xtj0�2
,

are nonzero; and by (38) we have ˇ̌̌̌
ˇ @rtj0�1@xtj0�1

ˇ̌̌̌
ˇ> X

j¤tj0�1

ˇ̌̌̌
ˇ @rj

@xtj0�1

ˇ̌̌̌
ˇ ,

which implies that dr
dx

satisfies the condition .C / of Definition 3.6. Thus, dr
dx

is diagonally dominated
with a chain of nonzero elements.
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Table I. Parameter values.

Parameter Value Parameter Value Parameter Value

V1 1 n1,1 1 k2,2 2
V2 1 n2,2 1
�1 1 k1,1 1

Therefore, by (34) and (36), we have @ri
@xi

< 0, i D 1, : : : ,n, which implies that the diagonal

elements of dr
dx

are negative. By Lemma 3.5, one can obtain

det

�
dr

dx

�
¤ 0, Re

�
�i

�
dr

dx

��
< 0, i D 1, : : : ,n.

Thus, (i) is true by Theorem 3.1, and (ii) is proved by [27, Theorem 2.4.18]. �

Corollary 3.3
SSN module with an output node is injective and has at most one equilibrium [3, Theorem 3.1]; and
the equilibrium, if any, is asymptotically stable [4, Theorem 2].

Remark 3.8
(i) (33) is only related to the network structure, not to the model parameters.

(ii) Generally speaking, the asymptotical stability in Theorem 3.5 is local. But if the set of state
nodes of .M , R/ has only two kinds of metabolites, then the stability is global [28].

4. EXAMPLES AND SIMULATIONS

Example 4.1
Consider MMN module .M1, R1/:

H1! S1, S1• S2.

Let S1 D ¹S1,S2º, R1 D ¹Ai ! Bi W i D 1, 2, 3º, where A1 ! B1 , H1 ! S1, A2 ! B2 ,
S1! S2, A3! B3 , S2! S1.

By (5), a model of .M1, R1/ is given by

dx

dt
D r.xI�, �, �, 	/D

�
v1 � v2C v3
v2 � v3

�
.

It can be seen that r D 0 is no solution due to v1 D �1 > 0. Thus, .M1, R1/ has no capacity for
admitting multiple positive equilibria. Because

det

�
dr

dx

�
D det

" 
� dv2
dx1

dv3
dx2

dv2
dx1

� dv3
dx2

!#
D
dv2

dx1

dv3

dx2
det

��
�1 1

1 �1

�	
D 0,

.M1, R1/ is non-injective by Theorem 3.1. In fact, if the model parameters take values from Table I,
then we have

r

�
1

2

�
D r

�
2

4

�
D

�
1

0

�
,

which implies .M1, R1/ is non-injective again. To sum up, although it is non-injective, .M1, R1/

has no capacity for admitting multiple positive equilibria.

Example 4.2
MMN module .M2, R2/ is given by

H1! S1, H2! S3, S1• S2, S2C S3! P1CP2.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2014; 24:1505–1529
DOI: 10.1002/rnc



1522 J. GUO, J.-F. ZHANG AND Y. ZHAO

Table II. Parameter values.

Parameter Value Parameter Value Parameter Value

V3 3 k1,3 2 n1,3 2
V4 1 k2,4 1 n2,4 1
V5 6 k2,5 1 k3,5 1
n3,5 1 n2,5 1 �1 1
�2 1

Let S2 D ¹S1,S2,S3º, R2 D ¹A1 ! B1, : : : ,A5 ! B5º, where A1 ! B1 , H1 ! S1, A2 !
B2 ,H2! S3, A3! B3 , S1! S2, A4! B4 , S2! S1, A5! B5 , S2C S3! P1CP2.

Then, by Definition 3.4, we have

ˆD

0@ 1 0 0

0 0 0

0 0 1

1A .

Thus, the input-matrixˆ of .M2, R2/ is singular. If the model parameters take values from Table II,
then a model of .M2, R2/ is

dx

dt
D r.xI�, �, �, 	/D

0BB@
1C x2

1Cx2
� 3x1
2Cx1

3x1
2Cx1

� x2
1Cx2

� 6x2x3
.1Cx2/.1Cx3/

1� 6x2x3
.1Cx2/.1Cx3/

1CCA .

In this case, r
��
2, 1, 1

2

�T �
D r

��
3, 4, 5

19

�T �
D 0, which implies that .M2, R2/ has multiple

positive equilibria though the input-matrix ˆ is singular.

Example 4.3
.M3, R3/ is an MMN module as follows:

H1CH2! S1, H1C 3S1! 2S2C S3,

H1CH2C 2S2! S4CP1CP2, S3! P1CP2, 2S4! S1CP2.

The set of its state nodes has four kinds of metabolites: S1,S2,S3 and S4, and the aforementioned
five reactions are denoted by A1 ! B1, : : : ,A5 ! B5, respectively. Then, we obtain a model of
.M3, R3/ as follows:

dx

dt
D r.xI�, �, �, 	/D

0B@
v1C v5 � 3v2

2v2 � 2v3
v2 � v4
v3 � 2v5

1CA . (39)

By Definition 3.5, we know that .M3, R3/ is an A -MMN module. Noticing det.Œ˛2,˛3,˛4,˛5�/
det.Œˇ2 � ˛3,ˇ3 � ˛3,ˇ4 � ˛4,ˇ5 � ˛5�/D 120, by Theorem 3.4, .M3, R3/ is injective.

Furthermore, .M3, R3/ also satisfies (33). Thus, by (39) we have

dr

dx
D

0BBB@
�3v02 0 0 v05

2v02 �2v03 0 0

v02 0 �v04 0

0 v03 0 �2v05

1CCCA .

By Definition 3.6, dr
dx

is diagonally dominated with a chain of nonzero elements and det
�
dr
dx

�
D

10v02v
0
3v
0
4v
0
5 > 0. This also implies .M3, R3/ is injective.
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On the other hand,

det

�
�I �

dr

dx

�
D .�Cv04/



�3C .3v02C 2v

0
3C 2v

0
5/�

2C .6v02v
0
3C 6v

0
2v
0
5C 4v

0
3v
0
5/�C10v

0
2v
0
3v
0
5

�
.

By [27, theorem 2.4.3], we know that the real parts of the eigenvalues of Jacobian matrix dr
dx

are all
negative. Thus, the equilibrium, if any, of .M3, R3/ is asymptotically stable. If the model parameters
take values from Table III, then .M3, R3/ has only the following positive equilibrium

Nx D

0BBBBB@
3
40

�
1C

3
p
5C

3
p
25
�

7
40

�
1C
p
5
�

2
13

2
33

�
2C
p
70
�

1CCCCCA .

Table III. Parameter values.

Parameter Value Parameter Value Parameter Value

V2 4 k1,2 0.3 n1,2 1
V3 8 k2,3 0.7 n2,3 1
V4 6 k3,4 1 n3,4 1
V5 3.5 k4,5 2 n4,5 1
�1 1 �2 0.5 �3 0.25
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Figure 2. Trajectories of .M3, R3/ starting from four different initial value sets .x10, x20, x30, x40/T : (a)
.0.01, 0.02, 0.10, 0.40/T , (b) .0.30, 0.45, 0.90, 1.50/T , (c) .10, 20, 30, 40/T and (d) .100, 2000, 30, 900/T .
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Figure 2 describes the dynamic behaviors of .M3, R3/ starting from four different initial values
.x10, x20, x30, x40/T . In the subfigures (a) and (b), the initial values are in a small neighborhood of
Nx, and the trajectories converge to Nx, which is consistent with Theorem 3.5. In the subfigures (c)
and (d), the trajectories also converge to Nx, although the distances between the initials value and Nx
are large.

5. CONCLUDING REMARK

It is fundamental and of practical significance to regulate the multi-steady-sate performance of
metabolic networks by changing the external conditions or readjusting the network structure.
To do so, two questions may have to be solved: (i) how to judge whether or not a metabolic
network can admit multiple equilibria; (ii) what kinds of topological structures can result in multiple
equilibria. From the theoretical point of view, the paper provided a partial answer to them. For the
MMN module, two necessary and sufficient injectivity conditions and a sufficient non-injective
condition for the existence of multiple positive equilibrium were provided. For a type of impor-
tant MMN module—A -MMN module—a structure-oriented criterion for injectivity judgement
was given. Especially, for a kind of A -MMN module with some special structure, the module
was shown to have no capacity for admitting multi-equilibria, and the equilibrium (if exists) was
asymptotically stable.

As future works, many challenging and meaningful problems are worth considering, such as the
dynamic characteristic of the MMN module with more general structures, the multi-equilibrium
property of MMI module, how to realize switchings among the different equilibria, and so on.

APPENDICES

Lemma A.1
If yi > 0, i D 1, : : : , 4, and

y5 D ln

�
y2

y1

�
, y6 D

8<: �y3 �
ln
�
y2
y1

�
Cln

�
y4Cy1
y4Cy2

�
ln
�
y4Cy1
y4Cy2

� , y1 ¤ y2I

any positive real number, y1 D y2,

then

y6 > 0, e
y6

y6Cy3
y5 D

y2

y4C y2

y4C y1

y1
.

Proof

If y1 D y2, then the lemma is true. Otherwise, let g.t/D logy2
y1

�
tCy1
tCy2

�
, t 2 .0,1/. Noticing

d

dt
g.t/D

1

.t C y1/.t C y2/

y2 � y1

ln.y2=y1/
> 0, g.0/D�1, lim

t!C1
g.t/D 0,

we have g.t/ 2 .�1, 0/. Thus, by y6 D�y3
1Cg.y4/
g.y4/

, we have y6 > 0. Substituting y6 into e
y6

y6Cy3
y5

results in e
y6

y6Cy3
y5 D y2

y4Cy2

y4Cy1
y1

, which implies the lemma. �

Lemma A.2
If ´1 > 0, ´2 > 0, ´3 6D 1 and

´4 D

8<:
´
´3
2
�´
´3
1

´
´3�1

1
�´
´3�1

2

, ´1 ¤ ´2I

any positive real number, ´1 D ´2,

then

´2

´4C ´2

´4C ´1

´1
D

�
´2

´1

�´3
, ´4 > 0 , 0 < ´3 < 1.
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Proof

If ´1 D ´2, the lemma is true. Otherwise, substituting ´4 D
´
´3
2
�´
´3
1

´
´3�1

1
�´
´3�1

2

into ´2
´4C´2

´4C´1
´1

, we have

´2
´4C´2

´4C´1
´1
D
�
´2
´1

�´3
. Let � D ´2=´1. Then,

´4 > 0,
´
´3
2 � ´

´3
1

´
´3�1
1 � ´

´3�1
2

> 0

,
�´3 � 1

1
´1
.1� �´3�1/

> 0

, .�´3 � 1/ .�´3 � �/ < 0

,min.1, �/ < �´3 <max.1, �/

,min ¹log� .min.1, �// , log� .max.1, �//º

< ´3 <max ¹log� .min.1, �// , log� .max.1, �//º

, 0 < ´3 < 1.

Thus, the lemma is proved. �

Lemma A.3
If y0 > 0 and p ¤ 1, then

lim
0<y!y0

y
p
0 � y

p

yp�1 � y
p�1
0

D
y0p

1� p
.

Proof
By L’ Hospital’s Rule [29], we have

lim
0<y!y0

y
p
0 � y

p

yp�1 � y
p�1
0

D lim
0<y!y0

�pyp�1

.p � 1/yp�2
D lim
0<y!y0

py

.1� p/
D

y0p

1� p
,

which implies the lemma. �

Lemma A.4
For any � D .�1, : : : , �n/T 2Rn, we have

dr

dx
.�/D

mX
jD1

.ˇj � ˛j /.˛j � �j � �/vj ,

where �j is given by

�j D �j .xI �j , 	j /,
 

k1,jn1,j

k1,j C x
n1,j
1

, : : : ,
kn,jnn,j

kn,j C x
nn,j
n

!T
, (A.1)

and the scalar product ‘�’ is defined as

˛j � �j .xI �j , 	j / � � ,
nX
iD1

ki ,jni ,j

ki ,j C x
ni ,j
i

˛i ,j

xi
�i , 16 j 6m. (A.2)

Proof
By (5), we have

@r

@xi
D

@

@xi

24 mX
jD1

.ˇj � ˛j /vj

35D mX
jD1

.ˇj � ˛j /
@vj

@xi
.
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This together with

@vj

@xi
D vj

ki ,jni ,j

ki ,j C x
ni ,j
i

˛i ,j

xi

indicates

@r

@xi
D

mX
jD1

.ˇj � ˛j /vj
ki ,jni ,j

ki ,j C x
ni ,j
i

˛i ,j

xi
, 16 i 6 n. (A.3)

Thus,

dr

dx
.�/D

�
@r

@x1
, : : : ,

@r

@xn

�
.�/D

nX
iD1

�
@r

@xi

�
�i

D

nX
iD1

mX
jD1

.ˇj � ˛j /vj
ki ,jni ,j

ki ,j C x
ni ,j
i

˛i ,j

xi
�i

D

mX
jD1

.ˇj � ˛j /vj

nX
iD1

ki ,jni ,j

ki ,j C x
ni ,j
i

˛i ,j

xi
�i ,

which together with (A.1) and (A.2) implies the lemma. �

Lemma A.5
For any r D r.xI�, �, �, 	/ 2 R, b D .b1, : : : , bn/T 2RnC and aD .a1, : : : , an/T 2RnC, there exist
Qr D Qr .xI�, Q�, Q�, 	/ 2R, c D .c1, : : : , cn/T 2RnC and � 2Rn such that

r.b/� r.a/DDQr.c/� ,

where � and c satisfy

�i

ci
D ln

�
bi

ai

�
, ci > 0I (A.4)

Q�, Q� can be selected as

Qki ,j D

8<: �c
ni ,j
i � 1Ct

t
, t D 1

ni ,j
log� bi

ai

� �ki ,jCani ,ji

ki ,jCb
ni ,j
i

�
, if ai ¤ bi I

any positive real number, if ai D bi I
(A.5)

eV jD
8̂<̂
:Vj

nY
iD1

 
a
ni ,j
i

ki ,jCa
ni ,j
i

Qki ,jCc
ni ,j
i

c
ni ,j
i

!˛i ,j
e˛j��j .cIQ
j ,�j /�� � 1

˛j � �j .cI Q�j , 	j / � �
, if ˛j � �j .cI Q�j , 	j / � � ¤ 0I

any positive real number, if ˛j � �j .cI Q�j , 	j / � � D 0.
(A.6)

Proof
From (A.4), we know c 2 RnC. Noticing (A.6) and x=.ex � 1/ > 0, 8x ¤ 0, one can get eV j > 0,
1 6 j 6 m. Let y1 D a

ni ,j
i , y2 D b

ni ,j
i , y3 D c

ni ,j
i and y4 D ki ,j in Lemma A.1. Then, by (A.4)

and (A.5) we have

exp

´
ni ,j Qki ,j
Qki ,j C c

ni ,j
i

�
�i

ci

μ
D

b
ni ,j
i

ki ,j C b
ni ,j
i

ki ,j C a
ni ,j
i

a
ni ,j
i

(A.7)

and

Qki ,j > 0, 16 i 6 n, 16 j 6m.

Hence, Qr.xI�, Q�, Q�, 	/ 2R.
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By (A.2) and (A.7), we know

e˛j��j .cIQ
j ,�j /�� D

nY
iD1

exp

´
ni ,j Qki ,j
Qki ,j C c

ni ,j
i

�
˛i ,j �i

ci

μ

D

nY
iD1

 
b
ni ,j
i

ki ,j C b
ni ,j
i

ki ,j C a
ni ,j
i

a
ni ,j
i

!˛i ,j
, 16 j 6m. (A.8)

This together with Lemma (A.4) and (A.6) implies

DQr.c/� D

mX
jD1

�jeV j nY
iD1

 
c
ni ,j
i

Qki ,j C c
ni ,j
i

!˛i ,j 

˛j � �j .cI Q�j , 	j / � �

�
.ˇj � ˛j /

D

mX
jD1

�jVj

nY
iD1

 
a
ni ,j
i

ki ,j C a
ni ,j
i

!˛i ,j �
e˛j��j .cIQ
j ,�j /�� � 1

�
.ˇj � ˛j /

D

mX
jD1

�jVj

"
nY
iD1

 
b
ni ,j
i

ki ,j C b
ni ,j
i

!˛i ,j
�

nY
iD1

 
a
ni ,j
i

ki ,j C a
ni ,j
i

!˛i ,j#
.ˇj � ˛j /.

Hence, by (5) we have r.b/� r.a/DDQr.c/� , which gives the lemma. �

Lemma A.6
For any r D r.xI�, �, �, 	/ 2 R, c 2 RnC and � 2 Rn, there exist Qr D Qr.xI�, Q�, Q�, 	/ 2 R, b 2 RnC
and a 2RnC such that

Dr.c/� D Qr.b/� Qr.a/

with

bi

ai
D e

�i
ci , bi > 0, ai > 0, (A.9)

Qki ,j D

8̂<̂
:

�
b
ni ,j
i

�t
�
�
a
ni ,j
i

�t
�
a
ni ,j
i

�t�1
�
�
b
ni ,j
i

�t�1 , t D
ki ,j

ki ,jCc
ni ,j
i

, if ai ¤ bi I

any positive real number, if ai D bi ,

(A.10)

eV j D
8̂<̂
:Vj

nY
iD1

 
Qki ,j C a

ni ,j
i

a
ni ,j
i

c
ni ,j
i

ki ,j C c
ni ,j
i

!̨
i ,j
˛j � �j .cI �j , 	j / � �

e˛j��j .cI
j ,�j /�� � 1
, if ˛j � �j .cI �j , 	j / � � ¤ 0I

any positive real number, if ˛j � �j .cI �j , 	j / � � D 0.
(A.11)

Proof
By (A.9) and (A.11), we have a 2RnC, b 2RnC and eV j > 0, 16 j 6m. Let ´1 D a

ni ,j
i , ´2 D b

ni ,j
i

and ´3 D ki ,j =
�
ki ,j C c

ni ,j
i

�
in Lemma A.2. Then, noticing 0 < ´3 < 1 and (A.10), we have

b
ni ,j
i

Qki ,j C b
ni ,j
i

Qki ,j C a
ni ,j
i

a
ni ,j
i

D

�
bi

ai

� ni ,j ki ,j

ki ,jCc
ni ,j
i (A.12)

and

Qki ,j > 0, 16 i 6 n, 16 j 6m.

Thus, Qr.xI�, Q�, Q�, 	/ 2R.
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From (A.2) and (A.9), it follows that

nY
iD1

�
bi

ai

� ni ,j ki ,j

ki ,jCc
ni ,j
i

�˛i ,j

D

nY
iD1

�
e
�i
ci

� ni ,j ki ,j

ki ,jCc
ni ,j
i

�˛i ,j

D exp

´
nX
iD1

ni ,jki ,j

ki ,j C c
ni ,j
i

˛i ,j �i

ci

μ
D e˛j��j .cI
j ,�j /�� .

Then, by (A.12) we have

nY
iD1

 
b
ni ,j
i

Qki ,j C b
ni ,j
i

Qki ,j C a
ni ,j
i

a
ni ,j
i

!˛i ,j
D

nY
iD1

�
bi

ai

� ni ,j ki ,j

ki ,jCc
ni ,j
i

�˛i ,j

D e˛j��j .cI
j ,�j /�� , 16 j 6m.

This together with (5) and (A.11) gives

Qr.b/� Qr.a/

D

mX
jD1

�jeV j
"
nY
iD1

 
b
ni ,j
i

Qki ,j C b
ni ,j
i

!˛i ,j
�

nY
iD1

 
a
ni ,j
i

Qki ,j C a
ni ,j
i

!˛i ,j#
.ˇj � ˛j /

D

mX
jD1

�jeV j nY
iD1

 
a
ni ,j
i

Qki ,j C a
ni ,j
i

!˛i ,j " nY
iD1

 
b
ni ,j
i

Qki ,j C b
ni ,j
i

Qki ,j C a
ni ,j
i

a
ni ,j
i

!˛i ,j
� 1

#
.ˇj � ˛j /

D

mX
jD1

�jVj

nY
iD1

 
c
ni ,j
i

ki ,j C c
ni ,j
i

!˛i ,j
Œ˛j � �j .cI �j , 	j / � ��.ˇj � ˛j /.

Hence, from Lemma A.4, we have Dr.c/� D Qr.b/� Qr.a/. Thus, the lemma is true. �
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